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What is a Quantum Computer?

Extremely Simplified:

e |t's not aturing machine!

e Manipulates qubits instead of bits

e Harnesses quantum resource - entanglement and
superposition
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Bit

Binary Variable:
Exitsin 0 or 1 state

o> @

Qubit

Superposition:
A qubit is both 0 and 1 at the
same time




Candidates For Quantum Computing

e Gate-model quantum computing
o Implemented by IBM

e Quantum Annealing
o Implemented by DWAVE
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Quantum Annealing

@ Energy minimization problem implemented via cooling

@ Energy diagram changes over time as the quantum annealing process

runs and a bias is applied

@ At the end of the quantum annealing process, each qubit collapses
from a superposition state into either 0 or 1 (a classical state)
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Applicable Problems

@ Optimization Problems:

e require the real minimum energy by minimising the cost function
o useful for discrete combinatorics problems

@ Probabilistic sampling problems:

e require good low-energy samples for characterizing the shape of the
energy landscape
e useful for machine learning problems
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Problem Formulation

e Ising Model

Eising(S Z hisi + Z Z J,JS,S_,

i=1 j=i+1

where x; € {—1,1} corresponding to spin up and spin down states
e QUBO: Quadradic Unconstrained Binary Optimization

f(X Z QI iXi T Z QIJXIX_]

I<J

where x; € {1,0} corresponding to true and false.
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Terms
~ Linear coefficient Quadratic coefficient

Problem

Expression

Variable

QUBO (scalar)
QUBO (matrix) |

Edge Strength

Coupling Strength Qubit State

Notation Conventions

States
(0,1}
0,1}
-1, 1}

{Spin Up,
Spin Down}

Khyati Jain (BITS Pilani)

Quantum Annealing on DWAVE Systems

December, 2019



DWAVE QPU Architecture
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DWAVE QPU Architecture |l

Chimera graphs (unit cell) have two isomorphic configurations - the
column and the cross.

Each node represents a physical qubit.

DWAVE's QPU comprises of lattice of repeating unit cells, with additional
connectivity between nodes of adjacent cells.
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Programming on DWAVE

W N~

Formulate the problem in QUBO or Ising form
Map the states to a physical qubit
Set the biases and weights in the equation

Allow the annealing process to occur under the influence of
these weights and biases

Read out the values of the qubits

Khyati Jain (BITS Pilani) Quantum Annealing on DWAVE Systems December, 2019



Simple Optimization Problem

Task: Maximize XNOR of two qubits g; and g5

e Objective Function: f(s) = a;q1 + a2q> + b12g1g2 where s is a
vector or the variables g = [q;, g2, a1 and a, are the qubit biases and
by » is the strength of the coupler.

@ We want to penalize (0,1),(1,0) while strongly favouring
(1,1)and(0,0) equally.

@ Set a1 =a»=aand by, = —2a

e If auto-scaling is turned off, magnitude of a affects the probabilities of
the outcomes.
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Representing Constraints in QUBO |

Exactly-one-true constraints: to find a function E ( a, b, ¢ ) that is at a minimum
when this objective is true. Because the variables a binary, a’=a.

E(a,b,c) = (a+ b+ c—1)> (1)

E(a,b,c) =2ab+2ac+2bc—a—b—c+1 (2)
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Representing Constraints in QUBO I

e Truth Table for Exactly-one-true-constraint:

e When expressed as QUBO we obtain:

b

Exactly 1

Energy

0

FALSE

1

0

TRUE

0

1

TRUE

0

=IO = O]

1

FALSE

1

o

0

TRUE

0

0

FALSE

1

FALSE

[ )

1

FALSE

1
1
1

E(xg,x1,Xx2) = 2x0x1 + 2x0x2 + 2x1x2 — X9 — x1 — x2 + 1.
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Minor Embedding the Problem

e Mapping from variables to qubits is known as minor embedding
e For this problem: Need to fit a 3 -qubit loop into a 4-sided structure

(Image Retrieved From DWAVE Documentation : Minor Embedding)

e Qubit 0is chained to qubit 5 to represent variable b.
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Running on DWAVE Visual Solver |l

Solution ¢  Energy -~ Occurrences o
E)Oolooo] O lv010.1 Oe'qgﬁfﬁf 0.0.0.0:0: EoES a5
I rale bl - >
[0,0.0,0,0,0,1,00,00,00,0000, . .

0,0,0,...]%: Graph @ Show

The solution shows the three possible answers (1,0,0), (0,1,0), and (0,0,1)
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Map Coloring Problem
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Map Coloring Problem

Objective: Given any separation of a plane into contiguous regions,
objective is to map each region to a color ¢, ¢ € C such that no two
regions which share a boundary have the same color and each region is
mapped to only one color.

@ Each region is mapped to only one color, of C possible colors.
@ No two regions which share a boundary have the same color

Solving the problem means finding a permissible color for each of the
regions.
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Expressing the constraints in binary variables

Use unary encoding. (Number of bits = number of colors)

For C=4;

Color Naturals | Unary Encoding

Blue 1 98,496,989y = 1,0,0,0
Green | 2 qs,9c,9r,9y = 0,1,0,0
Red 3 4s,9:.9r. 9y = 0,0,1,0
Yellow | 4 48, 9¢.9r.q9y = 0,0,0,1
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Expressing the constraints in binary variables Il

For a two-color problem: the constraint that a region be assigned a single color
only.
E(a;, b;j;q;) = agqs + acqc + bp,cqsqc-

Solution: seta;=a. =-1and b, . = 2. This sets the minimum energy for this
objective to - 1 for both valid states and 0 for invalid states

qB | qc | Constraint E(ai,bi,j;qi)
0 0 Violates 0

0 1 Meets ac
1 0 Meets ag
1 1 Violates ag +ag + bpg

Similarly for coupling two regions:

.\ _ -BC.BC , -AB_AB , 1.BC,AB_BC _AB
E(a;,bij;qi) = ag qg~ +ag"qr° +bg " "qg qR

Where BC and AB denote two regions.
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Problem Formulation

For example, take the Map of Canada:

NU MB ON QcC NL
& L 4 &
NT
YT SK NEg@ @
Pt
[
BC AB NS

Image and Example reproduced from: E. D. Dahl, Programming
with D-Wave: Map Coloring Problem, November 2013
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AB Alberta

BC British Columbia

MB Manitoba

NB New Brunswick

NL Newfoundland and Labrador
NS Nova Scotia

NT Northwest Territories
NU Nunavut

ON Ontario

PE Prince Edward Island
QC Quebec

SK Saskatchewan

YT Yukon
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Minor Embedding a region |

Problem: The constraints of a four-color map problem require full
connectivity between the four qubits encoding the color for each
region. Not available in Chimera Graph.

Solution: We need to embed the logical qubits to physical qubits
through chaining.
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Minor Embedding a region |l

Mapping logical qubits to physical qubits:

logical

Q | |
O

physical
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Expressing constraints in Binary Variables IlI

e A chainis formulated as a constraint: All the physical qubits should have
identical spin to represent one logical qubit.

E(a;, bij;qi) = a1qp1 + a2gp2 + b1,29B1982

where q, are the two physical qubits of the logical qubit for blue.

e Solution:setal=a2=1andDb1,2=-2.This sets the minimum energy for
this objective to 0 for both valid states and 1 for the states that violate the
constraint.
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Coupling two regions

Problem: Not all adjacent regions can be directly embedded onto the QPU

Solution: Clone regions as required

Example: Map of Canada :

Khyati Jain (BITS Pilani)

w N - O

0 1 2 3 4
NL | ON | MB | SK AB
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Results - Canada’s Map

For the Canada Map problem : 37 failures in 50 runs

Following graphs represent the connectivity and colors obtained
in a successful run:
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Results- India’'s Map

e More complex: 35 Nodes, 62 Edges
e Fails to anneal to the correct result in 200 attempts

INDIA

States and Union Territories

mmmmm
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Quantum Machine Learning on DWAVE

System
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quantum machine quantum information
learning ‘ processing

machine learning

quantum gibbs sampling




QBoost Algorithm

e Is an ensemble method which binary classification
amenable to quantum computing

e Problem is formulated as a thresholded linear
superposition of a set of weak classifiers

e The D-Wave is used to optimize the weights in a learning
process that minimizes the training error and number of

weak classifiers.
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Preliminaries -Ensemble Methods

Ensemble methods build a strong classifier by combining weak
classifiers

New
Test Lea rning X Data
e
Sample 1 Algorithm Classifier 1 l
Training = . Classifier 2 Combined
Examples Sampe Algorithm Classifiers
Test Learning 1
— —> 2
Sample 3 Algorithm Classifier 3
Prediction
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Weak Learner —g» Strong Learner

|dentify weak rules :

Apply base learning (ML) algorithms with a different distribution

Choose different distribution for each round :

The base learner takes all the distributions and assigns initial equal weight
to each observation. Iteratively: Pay higher attention to observations having
prediction error. Then, apply the next base learning algorithm to improve
accuracy.

Khyati Jain (BITS Pilani) Quantum Annealing on DWAVE Systems December, 2019



AdaBoost

D1 D2

-f‘ | + + 3 D3

o + :
+ + :
B3
Box 1 + = Box 3
4
X . - Box 4

Image obtained from this introductory article on AdaBoost:
https://towardsdatascience.com/understanding-adaboost-2f94f22d5bfe
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Binary Classification using Boosting

Classifier:

N
y = H(x) = sign (Z u',-hi(;r))

1=1

where x € RM are the input patterns to be classified
y € {-1, 1} is the output of the classifier

h.:x —> {1, 1} are weak classifiers or features detectors

w. € [0, 1] are a set of weights to be optimized.
H(x) is known as a strong classifier.
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Binary Classification using Boosting I

Loss function:

e A natural choice is 0-1 error, which counts the number of misclassifications

over the training set.
S N
L(w) = Z H (—ys Z wihi(xs)>
s=li

=1

e His the Heaviside step function.
e Regularization Term:

N
Rw) =Xl wllo=XA) w
=1

So, the problem reduces to the following minimization problem:

w?* = argmin (L(w) + R(w))
L) N N
= argmin Z H(—y, Z wihi(xg)) + A Z wio
s=1 i=1 i=1
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QBoost |

Formulating the Problem in QUBO:

e Need to transition from continuous weights w. € [0, 1] to binary variables =
a binary expansion of the weights.

It turns out we need only a few bits! (often a single bit suffices)

e Bit constraining can be regarded as an intrinsic regularization
e Using quadratic Loss:

S N
w?* = arg min (Z | Z wihi(xs) = ys” + A || w HO)
w E
N

S N
:argmuijn Z (Z w;h ) —2szhz s)Ys + y,’ +/\sz

s=1

( ( \)
N N S N S
= arg min Z Z W;W; (Z h,l-(:ps)hj(xs)> + Z w; | A—2 Z ha(s)us
- i=1 s=1

\ Corr(hi,hj) \ Corr(hi,y) } )
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QBoost Il

Formulating the Problem in QUBO:

e Using quadratic Loss and assuming 1 bit for w:

Biae

( / Coupling term / \
()

N S N £
woPt = arg mui,n Z Z wiw; (Z hi(x )h](frb)> - Zwi A—2 Z hi(xs)ys
i=1 =1

=1 9=1 s=1

— S—
\ Corr(h.,t,hj) \ Corr(hi,y) ) )

e Bias Term: If the output of weak classifiers h. is well correlated with the
labels y the bias term is lowered, increasing the probability that w. = 1.

e Coupling term: Strongly correlated weak classifiers cause the coupling
energy to go up, increasing the probability for one of the correlated
classifiers to be switched off (either w, or W, becomes 0)
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QBoost - Results

Sample run: Classifies tumors in scikit-learn's Wisconsin
breast cancer dataset as either malignant or benign (binary
classification). Train on a random % and test on the remaining
Va. Test error of 92%. Train#: 379, Test#: 190

e Comparison with other algorithms:

Method Adaboost DecisionTree Qboost QboostIt

Train 1.00 1.00
Test 0.89 0.92

e Competes successfully with greedy methods such as the
state-of-the art method AdaBoost.
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Implementing a Restricted Boltzmann
Machine on DWAVE
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Unsupervised Learning Supervised Learning

Learn the “best” model distribution that Learn the “best” model that can
can generate the same kind of data perform a specific task
MODEL MODEL
P ( Image ) P ( Label | Image)

Learning
algorithm

Learning

algorithm

i

Labels

NO LABELS 26624

DATASET DATASET
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Probabilistic Modelling

Aim:
@ Learn from noisy and unlabeled data
@ Define confidence levels in predictions
@ Allow decision making in the absence of complete information
How?
@ Probability distributions represent the unobserved quantities.
@ Data distributions approximated based on finite set ofsamples.

@ Learning : Prior — Posterior
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Boltzmann Distribution

e Energy-based probability distribution that defines probability p, for
each of the discrete states in a binary vector.

@ Let x represent a set of N binary random variables such that

where x, € 0,1 is the state of the n'” binary random variable in x .

@ The Boltzmann distribution defines a probability distribution

1

p(x) =  exp(~E(x;6))

where E(x;#) is an energy function parameterized by 6 and
L= Zexp(—E(x; d))
X

Z is the normalising factor.
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Boltzmann Distribution I

o E(x;0) is represented via a quadratic form xT Qx in which the matrix
Qp is defined by the biases (g; ) and correlation weights (g; ; ).

E(X)=x"Qx = Z qi jXiXj + Z qiiXi- (5)

i<j i

o If g;; is small (a negative value with a large magnitude), then x; and
xj are more likely to be 1 at the same time. The diagonal entries of Q
bias the probability of individual binary variables in x. If g; is large,
then x; is more likely to be zero.
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Boltzmann Machine |

@ A Boltzmann Machine is a network of symmetrically connected,

neuron-like binary units that make stochastic decisions about whether
to be on or off.

@ Have a simple learning algorithm that allows them to discover
interesting features in datasets composed of binary vectors.
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Boltzmann Machine Il

Example: Constructing simple Boltzman Machine using two binary
random variables, x” = [xq, xo] Assume

Then,

-1 2
E(x) = x"Qx = [xl xz] [O _J [2] = —X1 — Xo + 2X1X0.

This gives the probability of each state as the following
x1x2 | Eq(x) | p(x)
00 0 0.13
01 -1 0.37
10 -1 0.37
11 0 0.13
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Restricted Boltzmann Machine |

e Defines a probability distribution over a set of binary variables
that are divided into visible (input) v, and hidden h, variables.

e Constraint: All visible nodes are connected to all hidden
nodes. No two visible or two hidden nodes are connected

(Bipartite Graph)
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Restricted Boltzmann Machine i

@ Learning Process: visible variable is responsible for a feature from an
item in the dataset to be learned.

e Energy Function E(x) = E(v, h). And p(x;6) = p(v, h; 0)
o We are interested in: p(v;0) =), p(v, h;0)

@ Training: Minimizing the Negative Log Likelihood of the given D
training (visible) examples using gradient descent.

o The likelihood is L(0) = []5_, p(v(9); 0)

D
LL(9) = log(L(6)) = 3 logp(v\¥); 0)
d=1

@ Gradient descent method is used to minimize the NLL(#)
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Restricted Boltzmmann Machine Il

@ To calculate the gradient at a particular #, we must evaluate some
expected values: Ep,.g)f(x) for a set of functions f(x) known as the
sufficient statistics.

@ BUT: The expected values cannot be determined exactly, because we
cannot sum over all 2V configurations

@ We approximate by only summing over the most probable
configurations, which we obtain by sampling from the distribution
given by the current 0.
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Restricted Boltzmann Machine - Hamiltonian

o N-variable system has 2V classical states, and can be represented by
the classical Ising Hamiltonian operator (matrix)

H= Z b,o? + E Wap050p
a a.b

W
wnere o = 0 e

@ This Hamiltonian is a diagonal matrix with dimensions 2V by 2V. The
classical states are eigenvectors, and the corresponding energies are
eigenvalues of the Hamiltonian.

@ Boltzmann distribution: a probability distribution on the eigenvectors
of a Hamiltonian such that the probability of choosing an eigenvector
Is related to its eigenvalue.
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Quantum Boltzmann Machine

e Hamiltonian has off-diagonal terms. Eigenvector is now a superposition of
classical states.
e Letsrepresents classical states and W represents quantum states, then

p(s) = Y p(i)l{slgi)

e Hamiltonian including the Transverse Field:

X Z = A
H=—) Tq0;+) baoz+) Wapos0;,
a a

/ a,b

[ransverce Field
(quantom fluctuations)
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Learning the parameters

dlogp(v)

It turns out = (Vilj) gata — (Vi) modet

ow;

Hence using stochastic gradient ascent:  Aw;; = e((Vils) josn — (Wih5). i)

Unbiased sample of (vi%)) ., :Because there are no direct connections between
hidden units in an RBM, given a randomly selected training image v, the binary
state hj , of each hidden unit j, is set to 1 with probability

p(h; =1 |v)=0(b; + Z ViWij)

Similarly,
p(vi=1|h)=o0(a; + Z hjwi;)
j
Where, o(z) = 1/(1 + exp(-z))
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Learning weights - Classical Algorithm

Given D training examples, where each training example is a binary vector
with n elements, say corresponding to a user's movie preferences. Then for
each epoch, do the following:

Set the states of the visible units to a training example.

Update the states of the hidden units using the logistic activation
rule: for the jth hidden unit,activation energy aj = > . wjjx;, and set
x; to 1 with probability o(a;) else set to 0. For each edge ey,
Positive(ejj) = x; * X;.

Reconstruct the visible units: for each visible unit, compute its
activation energy a;, and update its state. Then update the hidden
units again, and compute Negative(ej;) = x; * x; for each edge.
Update the weight of each edge ej; by setting

wjj = w;jj + L x (Positive(ejj) — Negative(ejj)), where L is a learning
rate.

Repeat over all training examples.
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Using DWAVE Sampling services

e Getting an unbiased sample of (vih;), ....is difficult. (computational
Bottleneck)

e We turn to Quantum Assisted Machine Learning.

e DWAVE samples from energy-based distributions by seeking low
energy states

e These more probable values are used to calculate expectation
values.

Classical Preprocessing Quantum Sampling Classical Postprocessing
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Challenges of the hybrid approach:

e Need to solve classical-quantum model mismatch.

A'U.»‘jj — ﬁ(('l--"'ih'j>data o <'1""ill'j>i'rlod(zl)

clascical quantum

e Robustness to noise, Fully visible models intrinsic control errors, and
to deviations from sampling model (e.g., Boltzmann)

e Limited connectivity - parameter setting

Khyati Jain (BITS Pilani) Quantum Annealing on DWAVE Systems December, 2019



Using DWAVE Sampling services

Generative Training (“Pre-Training”)

Y
L*er 2 Pre-Training

Layer 1 Pre-Training

Initialize RBM w random weights Q
uantum

For # of pre-training iterations: . Quantum

yoy Sampling
Tr;u:nang Y R Annealing
a Aw;; X< Vil > a0 —C Vil > moder Machine

DiscriminativeTraining
(pure classical) backpropagation

Truth
Labels

Figure 2 Overall training approach including generative and discriminative training

Figure retrieved from https://arxiv.org/pdf/1510.06356.pdf
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Example of QUBO Problem Formulation

05

12., 13.],
14. 15 1,
0.]

]

4 ,
o' 5,11, dtype=float32)
array([ 1., 2., 3., 4., B5.], dtype=float32)

Khyati Jain (BITS Pilani) Quantum Annealing on DWAVE Systems

RBM with n = 3 visible nodes,
2 hidden nodes, for a total of N =5
nodes, M = 6 edges

Node biases:1to 5
Edge weights : 10to 15

—
O

oW b w

et bt b d

[° 3],
[2, 4] ] dtype=int32)
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Embedding the problem

visible hidden
layer layer

visible node 1
visible node 2
visible node 3

visible node 4

visible node 5
visible node 6

visible node 7
visible node 8

hidden node 1
hidden node 2
hidden node 3

hidden node 4

hidden node 5
hidden node 6
hidden node 7

hidden node 8

Figure 4 Embedding of RBM visible and hidden nodes onto D-Wave chip layout

Figure retrieved from https://arxiv.org/pdf/1510.06356.pdf
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Generative modelling - NASA's results

(a) Recognition network (b) Generator network (C)
LA O
QISIN{NOIOIC] 3] 1
it Je)  HeMERHEEEY
il il BOIAE GG ED
Hidden layer u? OQbQ E[ﬂﬂ@m
] ﬂ (d)
Hidden layer i (OOOQOQ0) ©O0000) mnﬂﬂﬁ“n“w
i 4 O131017{ 71010101 5[3
Pty (S000D0) 60000 [RACHINZGHE

TR A2 3101913 {0131 /171510!

Higher resolution
representation z

Samples from
quantum annealer |~ }X

Experiments using 1644 qubits (no further postprocessing!) Max. CL =43

Benedetti, Realpe-Gomez, and Perdomo-Ortiz. Quantum-assisted Helmholtz machines: A quantum-classical deep
learning framework for industrial datasets in near-term devices. arXiv:1708.09784 (2017).
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Results - Simulated Quantum Annealing

e Using DWAVE's sampling libraries that run on CPU.
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Feature Selection using DWAVE
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What is Feature Selection?

e Select the most relevant features in the dataset
e Having additional irrelevant features has two issues:

o Model learns on these leading to lower accuracy

o Higher dimensionality leads to higher complexity of the model

e |If two relevant features are strongly correlated, discard one of
them

e One of the methods to do so: using Mutual Information.

Khyati Jain (BITS Pilani) Quantum Annealing on DWAVE Systems December, 2019



Shannon Entropy

Shannon entropy H(X) quantifies the information in a signal.

H(X) = — ) p(x)log p(x)

xeX

where p(x) represents the probability of an event's occurrence. The less
likely the occurrence of an event, the more information is attributed to it.
Conditional Shannon entropy measures the information in one signal,
X, when the value of another signal, Y, is known.

H(X|Y) = H(X,Y) - H(Y)
=— > _p(x,y)log p(x,y) — H(Y)

xeX

where H(X, Y) measures the information in both signals together, with
p(x, y) being their joint probability. Knowing that event X occurs, reduces
the information of news that a highly correlated event Y occurs.
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Mutual Information

Mutual Information quantifies how much a random variable X knows

about Y.
o i P05
I(X;Y) —y;/)%:p( ¥} 1% S
= H(Y) — H(Y|X)

Conditional mutual information between a variable of interest, X, and a
feature, Y, given the selection of another feature, Z, is given by
I(X; Y|Z)=H(X|Z)— H(X|Y.,Z)

where H(X|Z) is the CSE of X conditional on Z and H(X|Y, Z) is the
CSE of X conditional on both Y and Z.
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Feature Selection

@ Maximise /(X; Y), the MI between a set of k features, X, and
variable of interest, Y to select a model’'s k most relevant of n

features. (Hard!)

@ Assuming conditional independence of features and limiting CMI
calculations to permutations of three features, the optimal set of

features is then approximated by:

n
arg mkax g {
=1

"

: jek|i

celects features that best / \

,brec/fct the variable of

interect

(X Y)+ ) 1(X: YIX) ¢

)

/

celects features that
complement information
about the variable of interect

Khyati Jain (BITS Pilani)
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QUBO representation of the problem

@ Represent each choice of (2) features as the value of solution
X1, ..., XNy by encoding x; = 1 if feature X; should be selected and

x; = 0 if not.
e Construct a matrix Q such that : Q;; = —/(X;; Y) and
Qii = —1(Xj; Y|Xi). (Negative sign converts maximization problem to

minimization.)
e QUBO problem can be given as: x” Qx, where Q is the n x n matrix
and x is an n x 1 matrix representing the selected features.

e Constraint that exactly k features be selected: penalize solutions that
select greater or fewer than k features by adding penalty
P=a} ] (xi—k)?
to the QUBO. A large enough « can ensure that such solutions are no
longer minima of the problem.
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Toy Problem

15 1

10

Problem: Three inputs: in1 = sin function, in2 = noisy sin
function, in3 = noisy linear function; Output = 2*in1 + 3*in2 +

6*in3

Result: Running on the QPU for k = 2 gives the following
energy graph which matches expectation

Modeling inl and in2

o0

: or:ct:del 3:""~.
@
& (-]

vy o

wv' v ’

) v‘o vy
) vv'
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e Why is DWAVE performing so badly on Map Colouring
Problem? What preprocessing is required?

e |s QBoost algorithm petter than other classification algorithms,
say AdaBoost?

e RBM sampling has been done on simulated quantum

annealing. Does using DWAVE Solver API (QPU) give good
results?
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Further Reading

There is active research going on in Quantum assisted Machine learning.
Few other things, researchers have worked upon:

e Bayesian Structure Learning :

Bryan O'Gorman et. al. ,Bayesian Network Structure Learning Using
Quantum Annealing https://arxiv.org/abs/1407.3897

e Support Vector Machines:

D. Willsch et. al, Support vector machines on the D-Wave quantum
annealer, https://arxiv.org/pdf/1906.06283.pdf
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DEMO RESULTS OF MAP COLOURING!

Scaling Map colouring(PRORITY) - show graph
RBM running code (TOP PRORITY)

Feature selection make slides (IF TIME)

One slide for BS learning and SVM each(IF TIME)
Show some results :(
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Issues Faced

e Incompatibility between qubist and ocean platforms

e DWAVE is shifting platforms, so a lot of
documentation is unavailable.

e Downtime as NASA renegotiates contract.

e Libraries not updated to python3
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